The DAV Class 4 Maths Solutions and **DAV Class 4 Maths Chapter 9 Worksheet 4 **Solutions of Fractions offer comprehensive answers to textbook questions.

## DAV Class 4 Maths Ch 9 WS 4 Solutions

Question 1.

Find if the following pairs of fractions are equivalent.

(a) \(\frac{1}{3}\) and \(\frac{3}{9}\)

Answer:

\(\frac{1}{3}\) and \(\frac{3}{9}\)

1 × 9 = 9

3 × 3 = 9

so, \(\frac{1}{3}=\frac{3}{9}\)

(b) \(\frac{2}{5}\) and \(\frac{8}{25}\)

Answer:

2 × 25 = 50

5 × 8 = 40

so, \(\frac{2}{5} \neq \frac{8}{25}\)

(c) \(\frac{10}{15}\) and \(\frac{2}{3}\)

Answer:

10 × 3 = 30

15 × 2 = 30

so, \(\frac{10}{15}>\frac{2}{3}\)

(d) \(\frac{3}{7}\) and \(\frac{24}{56}\)

Answer:

3 × 56 = 168

7 × 24 = 168

so, \(\frac{3}{7}=\frac{24}{56}\)

(e) \(\frac{1}{10}\) and \(\frac{1}{40}\)

Answer:

10 × 1 = 10

1 × 40 = 40

so, \(\frac{1}{10} \neq \frac{1}{40}\)

(f) \(\frac{3}{4}\) and \(\frac{75}{100}\)

Answer:

3 × 100 = 300

4 × 75 = 300

so, \(\frac{3}{4}=\frac{75}{100}\)

(g) \(\frac{2}{9}\) and \(\frac{18}{81}\)

Answer:

2 × 81 = 162

9 × 18 = 162

so, \(\frac{2}{9}=\frac{18}{81}\)

(h) \(\frac{15}{16}\) and \(\frac{30}{48}\)

Answer:

15 × 48 = 720

16 × 30 = 480

so, \(\frac{15}{16} \neq \frac{30}{48}\)

(i) \(\frac{7}{11}\) and \(\frac{49}{77}\)

Answer:

7 × 77 = 539

11 × 49 = 539

so, \(\frac{7}{11}=\frac{49}{77}\)

Question 2.

Write ‘True’ or ‘False’ for the following:

(a) \(\frac{7}{8}=\frac{35}{40}\)

Answer:

True

7 × 40 = 280

8 × 35 = 280

(b) \(\frac{1}{5}=\frac{8}{50}\)

Answer:

False

1 × 50 = 50

5 × 8 = 40

(c) \(\frac{11}{13}=\frac{22}{26}\)

Answer:

True

11 × 26 = 286

13 × 22 = 286

(d) \(\frac{25}{30}=\frac{5}{6}\)

Answer:

True

25 × 6 = 150

30 × 5 = 150

(e) \(\frac{100}{700}=\frac{10}{70}\)

Answer:

True

100 × 70 = 7000

700 × 10 = 7000

(f) \(\frac{12}{9}=\frac{9}{12}\)

Answer:

False

12 × 12 = 144

9 × 9 = 81

### DAV Class 4 Maths Chapter 9 Worksheet 4 Notes

If the cross products of numerator of one and denominator of the other fraction are same, the two fractions are equivalent.

Example:

i.e 3 × 25 = 75

5 × 15 = 75

so, \(\frac{3}{5}=\frac{15}{25}\)