## ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Arithmetic and Geometric Progressions Ex 9.1

Question 1.

For the following A.P.s, write the first term a and the common difference d:

(i) 3, 1, -1, – 3, …..

(ii) \(\frac { 1 }{ 3 } ,\frac { 5 }{ 3 } ,\frac { 9 }{ 3 } ,\frac { 13 }{ 3 } ,…. \)

(iii) -3.2, -3, -2.8, -2.6, …

Solution:

Question 2.

Write first four terms of the A.P., when the first term a and the common difference d are given as follows:

(i) a = 10, d = 10

(ii) a = -2, d = 0

(iii) a = 4, d = -3

(iv) a = \(\\ \frac { 1 }{ 2 } \), d = \(– \frac { 1 }{ 2 } \)

Solution:

Question 3.

Which of the following lists of numbers form an A.P.? If they form an A.P., find the common difference d and write the next three terms :

(i) 4, 10, 16, 22,…

(ii) -2, 2, -2, 2,…..

(iii) 2, 4, 8, 16,….

(iv) 2, \(\\ \frac { 5 }{ 2 } \), 3, \(\\ \frac { 7 }{ 2 } \),……

(v) -10, -6, -2, 2,….

(vi) 1², 3², 5², 7²,….

(vii) 1, 3, 9, 27,….

(viii) √2, √8, √18, √32,….

(ix) 3, 3 + √2, 3 + √2, 3 + 3√2,…..

(x) √3, √6, √9, √12,……

(xi) a, 2a, 3a, 4a,…….

(xii) a, 2a + 1, 3a + 2, 4a + 3,….

Solution:

ML Aggarwal Class 10 Solutions for ICSE Maths